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Abstract: Recent data have found that aging-related hearing loss (ARHL) is associated with the
development of Alzheimer’s Disease (AD). However, the nature of the relationship between these
two disorders is not clear. There are multiple potential factors that link ARHL and AD, and previous
investigators have speculated that shared metabolic dysregulation may underlie the propensity to
develop both disorders. Here, we investigate the distribution of serum lipidomic biomarkers in AD
subjects with or without hearing loss in a publicly available dataset. Serum levels of 349 known
lipids from 16 lipid classes were measured in 185 AD patients. Using previously defined co-regulated
sets of lipids, both age- and sex-adjusted, we found that lipid sets enriched in phosphatidylcholine
and phosphatidylethanolamine showed a strong inverse association with hearing loss. Examination
of biochemical classes confirmed these relationships and revealed that serum phosphatidylcholine
levels were significantly lower in AD subjects with hearing loss. A similar relationship was not found
in normal subjects. These data suggest that a synergistic relationship may exist between AD, hearing
loss and metabolic biomarkers, such that in the context of a pathological state such as AD, alterations
in serum metabolic profiles are associated with hearing loss. These data also point to a potential role
for phosphatidylcholine, a molecule with antioxidant properties, in the underlying pathophysiology
of ARHL in the context of AD, which has implications for our understanding and potential treatment
of both disorders.

Keywords: Alzheimer; mild cognitive impairment; hearing loss; presbycusis; phosphatidylcholine;
lipidomic

1. Introduction

Aging-related hearing loss (ARHL) and Alzheimer’s Disease (AD) are common disabling disorders
in the elderly. Over the age of 65, approximately 10% of individuals develop AD, while approximately
40% develop ARHL [1,2]. Both disorders are rising in prevalence as the population ages, and an
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estimated 83 million individuals will be over the age of 65 in the U.S. by the year 2050 [3]. Recent data
have revealed an association between AD and ARHL, such that the likelihood of developing cognitive
impairment, and ultimately AD, is increased in individuals with ARHL [4–11]. This relationship holds
true even when adjusting for age, sex and multiple other potentially confounding variables, such as
comorbid illness. A causal association has not been identified, though multiple mechanisms by which
hearing loss may lead to AD have been proposed (reviewed in [12]).

ARHL and AD do share several potential biological substrates. Both are associated with metabolic
stress and diminished mitochondrial function [13,14]. For example, in the cochlea, aging-related
mitochondrial dysfunction may lead to chronic inflammation, resulting in the induction of apoptosis [15–19].
Lipid dysregulation may also play a role in the development of hearing loss [20]. ARHL is also associated
with more traditional markers of AD, such as increases in cerebrospinal fluid (CSF) tau and diminished
hippocampal and entorhinal cortical volume [21]. Recently, it has been suggested that AD may be
associated with widespread dysregulation of lipid metabolism [22] and plasma lipid profiles have been
shown to correlate with multiple AD-related biomarkers [23]. Further, lipid dysregulation in AD may
lead to lipid peroxidation as well as dysregulation of brain inflammatory mediators, which are both
associated with amyloid beta deposition [24–26]. It is therefore possible that an underlying process of
metabolic dysregulation, including altered lipid homeostasis, may account for the relationship between
AD and ARHL.

Lipids are a major component of biological membranes and integral to neuronal function.
Body lipids are derived from three sources: our diet, adipose tissue storage and the liver’s synthetic
capacity. Fats ingested in the diet enter the gastrointestinal tract, are digested by pancreatic lipases
in the small intestine and are then moved across the intestinal mucosa. Lipids are then packaged
along with cholesterol into chylomicrons which allow for nonpolar substances to move within the
aqueous environment of our lymphatic and circulatory systems. These fats are then oxidized through
β-oxidation for energy production or re-esterized for storage in adipose tissue. Alternatively, lipids
in the small intestine can be distributed to the liver through portal circulation or to adipose tissue.
Lipids derived from endogenous synthesis in the liver are packaged into very low-density lipoproteins
that are transported to tissue or stored in adipose tissue. Fat stores in adipose tissue are mobilized
for energy production by the action of hormone-sensitive lipase as needed. Lipids also form a key
component of biological membranes and many have antioxidant properties. As such, disruptions in
lipid metabolism are likely to cause widespread dysfunction in metabolically vulnerable tissues.

Given the potential roles for lipid dysregulation in the development of both AD and ARHL
reviewed above, and recently discovered associations between serum lipid profiles and AD pathological
biomarkers [23], we hypothesized that serum lipids may be disrupted in AD subjects with hearing
loss. Therefore, in the current study, we examined the distribution of serum lipids in subjects with AD,
with and without hearing loss, using a publicly available dataset (Alzheimer’s Disease Neuroimaging
Initiative, ADNI).

2. Methods

2.1. Database

Data used in the preparation of this article were obtained from the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was launched in 2003
as a public–private partnership, led by principal investigator Michael W. Weiner, MD. The primary
goal of the ADNI has been to test whether serial magnetic resonance imaging (MRI), positron emission
tomography (PET), other biological markers and clinical and neuropsychological assessment can be
combined to measure the progression of mild cognitive impairment (MCI) and early AD. For up-to-date
information, see www.adni-info.org. This study was registered under ClinicalTrials.gov Identifier:
NCT00106899. The study was conducted across multiple clinical sites and was approved by the
Institutional Review Boards of all of the participating institutions. Informed written consent was
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obtained from all participants at each site. The following individual ethics boards approved the
study: Albany Medical College Institutional Review Board, Boston University Medical Campus
Institutional Review Board (BU IRB), Butler Hospital Institutional Review Board, Cleveland Clinic
Institutional Review Board, Columbia University Institutional Review Board, Dartmouth-Hitchcock
Medical Center Committee for the Protection of Human Subjects, Duke University Health System
Institutional Review Board, Emory University Institutional Review Board, Georgetown University
Institutional Review Board, Human Investigation Committee Yale University School of Medicine,
Human Subjects Committee, University of Kansas Medical Center, Indiana University Institutional
Review Board, Research Compliance Administration, Institutional Review Board of Baylor College of
Medicine, Institutional Review Board of the Mount Sinai School of Medicine, Johns Hopkins University
School of Medicine Institutional Review Boards, Lifespan—Rhode Island Hospital Institutional
Review Board, Mayo Clinic Institutional Review Board, Nathan Kline Institute Rockland Psychiatric
Center Institutional Review Board (NKI RPC IRB), New York University Langone Medical Center
School of Medicine, Institutional Review Board Human Research Program, Northwestern University
Institutional Review Board Office, Office of the Washington University School of Medicine IRB (OWUMC
IRB), Oregon Health and Science University Institutional Review Board, Partners Human Research
Committee, Research Ethics Board Jewish General Hospital, Research Ethics Board Sunnybrook Health
Sciences Centre, Roper St. Francis Institutional Review Board, Rush University Medical Center
Institutional Review Board, Stanford University, Administrative Panel on Human Subjects in Medical
Research, The Ohio State University Institutional Review Board, The University of Texas Southwestern
Medical Center Institutional Review Board, UCLA Office of the Human Research Protection Program
Institutional Review Board, UCSD Human Research Protections Program, University Hospitals Case
Medical Center Institutional Review Board, University of Alabama at Birmingham Institutional
Review Board, University of British Columbia, Clinical Research Ethics Board (CREB), University
of California Davis Office of Research IRB Administration, University of California Irvine Office of
Research Institutional Review Board (IRB), University of California San Francisco Committee on
Human Research (CHR), University of Iowa Institutional Review Board, University of Kentucky Office
of Research Integrity, University of Michigan Medical School Institutional Review Board (IRBMED),
University of Pennsylvania Institutional Review Board, University of Pittsburgh Institutional Review
Board, University of Rochester Research Subjects Review Board (RSRB), University of South Florida
Division of Research Integrity & Compliance, University of Southern California Health Science Campus
Institutional Review Board, University of Western Ontario Research Ethics Board for Health Sciences
Research Involving Human Subjects (HSREB), University of Wisconsin Health Sciences Institutional
Review Board, Wake Forest University Institutional Review Board, Weill Cornell Medical College
Institutional Review Board, Western Institutional Review Board and Western University Health Sciences
Research Ethics Board. Data used for the analyses presented here were accessed on June 25, 2020.

2.2. Lipid Analysis

Details of lipid extraction and measurement as well as quality control measures have been
previously described [27]. In brief, fasting serum samples were obtained from subjects during the
baseline visit. Lipids were extracted using organic solvents. Serum extracts were then analyzed using
liquid chromatography with mass spectrometry. After quality control measures, data were available
from a total of 349 known lipids from 16 classes (see Table 1 for a list of lipid classes). The lipid
subclasses in the ADNI serum lipidomics dataset used in this study include acylcarnitine, fatty
acid, cholesteryl ester, lysophosphatidylcholine, lysophosphatidylethanolamine, phosphatidylcholine,
phosphatidylethanolamine, phosphatidylinositol, plasmalogen phosphatidylcholine, plasmalogen
phosphatidylethanolamine, ceramide, glucosylceramide, sphingomyelin, diacylglycerol and
triacylglycerol (see Table 1 for a list of lipid classes).
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Table 1. Listing of lipid classes in the current study.

Lipid Classes Lipid Count

Acylcarnitine 9
Ceramide 19

Cholesterol 1
Cholesteryl ester 8

Diacylglycerol 13
Fatty acid 29

Galactoylceramide 1
Glucosylceramide 6
Lactosylceramide 1

Lysophosphatidylcholine 22
Lysophosphatidylethanolamine 4

Phosphatidylcholine 82
Phosphatidylethanolamine 25

Phosphatidylinositol 11
Sphingomyelin 34
Triacylglycerol 84

2.3. Clinical Diagnosis and Hearing Loss Assessment

AD was diagnosed using NINCDS/ADRDA criteria for probable AD [28]. MCI patients had a
memory complaint, an abnormal score on the Logical Memory II subscale from the Wechsler Memory
Scale, a Mini-Mental Status Exam score between 24–30 and a Clinical Dementia Rating scale score of
0.5. Normal subjects did not have a memory complaint, had a normal score on the Logical Memory
II subscale and had a Clinical Dementia Rating scale score of zero. Hearing was not systematically
measured in the ADNI database. Similar to a previous report [21], we used subjective hearing loss
complaints found in the following datasheets: ADSXLIST.csv, BLSCHECK.csv, INITHEALTH.csv,
MEDHIST.csv, NEUROEXM.csv, PHYSICAL.csv, RECBLLOG.csv, RECMHIST.csv. We used the search
terms “hear”, “auditory”, “ear”, “deaf”, “presbycusis” and “HOH (hard of hearing)” and eliminated
those reports that were clearly not related to aging-related hearing loss (e.g., skin cancer on ear,
earwax, etc.), as well as entries that referred to tinnitus without mention of hearing loss and eliminated
duplicates. These search terms are identical to those used by Xu et al. (2019) and were selected prior to
the data being seen. Subjects with a hearing complaint are labeled in this study as “hearing loss” or
HL. Other subjects are listed as “non-hearing loss” or NHL, notwithstanding the fact that hearing was
not objectively measured (see below).

2.4. Statistical Methods

The effect of each individual lipid species on hearing loss in AD subjects was assessed via analysis
of covariance (ANCOVA) after adjusting for gender and age as covariates, and log transforming the
lipid expression values. Samples with an absolute value of studentized residuals from this model
exceeding 3 were identified as outliers and excluded from further analysis. The summary measures
reported from this analysis include the area under the receiver operating characteristic curve (ROC
AUC), covariate-adjusted significance (p-value) and false discovery rate [29].

The effect of each of the 16 known lipid classes and 28 empirically derived lipid sets (Barupal et al.,
2019) on hearing loss in AD subjects was assessed via “lipid set analysis” (LSA). See Supplementary
Table S1 for a list of the lipids in each of the 28 sets. This LSA of the lipid classes and lipid sets was
based on the maxmean statistic of the gene set analysis algorithm [30], which was applied on the
residuals from the above ANCOVA model on the individual lipid species to adjust for the effects of age
and gender. Individual subject-level standardized composite scores were determined for each lipid
class and each lipid set from this algorithm. These scores were then used to assess the effect of each of
the lipid classes and lipid sets on hearing loss in AD subjects. The results were summarized in terms
of ROC AUC, covariate-adjusted significance (p-value) and false discovery rate (q-value). Lipid sets
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with q-value < 0.05 were considered as statistically significant. The corresponding lipid classes and
individual lipid species with Bonferroni-adjusted p-value < 0.05 were highlighted and studied further
in terms of their potential connections to hearing loss in AD subjects.

3. Results

3.1. Demographics

Data were obtained from 185 subjects with AD. Of the 185, 40 (21.6%) reported hearing loss
(HL). HL subjects were not significantly different in age than NHL subjects (HL: 77.2 ± 5.8 years
(SD), NHL: 74.8 ± 7.7 years (SD), p > 0.05). HL subjects were more likely to be men than control
subjects (NHL = 47% men, HL = 68% men, p < 0.05, chi-square). HL and NHL subjects did not
differ significantly in average ADAS13 scores (HL: 30.4 ± 8.0 (SD), NHL: 28.8 ± 7.6 (SD), p > 0.05),
body mass index (HL: 26.0 ± 4.1 kg/m2 (SD), NHL: 25.3 ± 3.8 kg/m2 (SD), p > 0.05) or use of prescription
lipid-lowering drugs (e.g., statins, gemfibrozil, etc., HL: 55%, NHL: 52.4%, p = 0.77, chi-squared test,
see Table 2).

Table 2. Demographic variables. * p < 0.05. NHL = no hearing loss. HL = hearing loss.

NHL HL

n (# of AD subjects) 145 40

Gender * (n) F 77 13
M 68 27

Age in years (Mean +/− SD) 74.8 (7.7) 77.2 (5.8)
BMI in kg/m2 (Mean +/− SD) 25.32 (3.8) 26 (4.1)

Use of lipid-lowering drugs (n) No 69 18
Yes 76 22

ADAS13 (Mean +/− SD) 28.6 (7.6) 30.4 (8)

3.2. Lipidomic Biomarker Sets That Separate HL from NHL Subjects

Levels of 349 lipids were measured across 16 classes. Because the levels of many of the lipids
are strongly correlated due to co-regulation, and because of the high potential for false discovery
when comparing the levels of all 349 lipids, we attempted to reduce the data by grouping the lipids.
A previous report measured correlations between all of the serum lipid biomarkers, and using a
dynamic clustering algorithm known as dynamicTreeCut, determined that 28 co-regulated sets of
lipids were present [23]. They also found that many of these lipid sets were associated with either AD
diagnosis or AD biomarkers. Although most of the sets were homogeneous (or near-homogeneous)
clusters of single lipid types, others comprised a mixture of lipids (see supplementary Table S1 for a
list of lipids in each class).

Given the robust performance of these clusters to signal changes in AD biomarkers, we asked
whether these same clusters were also associated with the presence of HL. The p- and q-values for the
28 groups of lipids are shown in Table 3. We found that two sets of lipids correlated with the presence
of hearing loss: set 23 and set 4, both with p- and q-values below 0.05, with set 23 producing the best
performance. We therefore focused on the lipids found in these two sets for subsequent analyses of
lipid class and individual lipids.
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Table 3. Table of lipid sets derived from Barupal et al. (2019) and their performance in distinguishing
HL from NHL in Alzheimer’s disease (AD) subjects. ROC AUC = receiver operating characteristic area
under the curve. FDR-BH = Benjamini-Hochberg False Discovery Rate

Lipid Set Median (NHL) Median (HL) ROC AUC p-Value (unadj.) q-Value (FDR-BH)

Set.23 0.54 −2.1 0.66 0.0006 0.0175
Set.4 0.16 −1.06 0.64 0.0032 0.0447
Set.6 −0.05 0.35 0.62 0.0148 0.1332
Set.25 1 −1.3 0.62 0.019 0.1332
Set.3 0.37 −0.74 0.6 0.0297 0.1664
Set.16 −0.16 0.27 0.59 0.0529 0.2171
Set.10 0.26 −1.18 0.6 0.0543 0.2171
Set.14 0.51 −1.16 0.6 0.0705 0.2467
Set.11 0.55 −1.21 0.61 0.0802 0.2495
Set.27 0.6 −1.61 0.58 0.1025 0.2871
Set.19 0.2 −0.35 0.58 0.1238 0.3014
Set.7 0.06 −0.74 0.58 0.1292 0.3014
Set.8 0.31 −0.26 0.57 0.1694 0.3467
Set.28 0.4 −0.12 0.56 0.1788 0.3467
Set.15 0.71 −0.31 0.56 0.1857 0.3467
Set.20 0.22 −0.45 0.56 0.2013 0.3523
Set.13 −0.67 −1.3 0.56 0.2554 0.4206
Set.17 0.34 0.2 0.47 0.2836 0.4387
Set.24 −0.4 −1.43 0.56 0.3135 0.4387
Set.2 −0.2 0.25 0.47 0.3153 0.4387
Set.9 0.54 −0.33 0.55 0.329 0.4387
Set.1 −0.3 −1.07 0.55 0.3879 0.4937
Set.26 0.02 0.58 0.48 0.4248 0.5171
Set.22 −0.18 −0.35 0.53 0.4606 0.5359
Set.18 −0.1 −0.68 0.54 0.4785 0.5359
Set.5 0.54 −0.55 0.53 0.6265 0.6747
Set.21 −0.21 0.32 0.5 0.8784 0.9109
Set.12 0.09 0.07 0.51 0.9827 0.9827

3.3. Lipid Classes and Individual Lipids That Separate HL from NHL Subjects

Using the biomarker sets to narrow our hypotheses about which lipids exhibit signal changes in
hearing, we attempted to determine which lipid classes were most significantly associated with HL.
Within the two significant sets identified above (q < 0.05), 25 lipids in seven classes were identified,
with only the phosphatidylcholine class surviving correction for multiple comparisons (uncorrected
p-value = 0.0057, Bonferroni corrected to 0.04). See Figure 1 for boxplots of the seven biomarker classes
comparing HL and NHL subjects. See Table 4 for a list of lipid classes found in sets 4 and 23 and their
associated capacity to separate HL from NHL subjects.

Table 4. Table of lipid classes derived from sets 4 and 23 from Barupal et al. (2019) and their performance
in distinguishing HL from NHL subjects. Unadjusted p-values that survive the Bonferroni correction
(<0.05) are noted with *.

Lipid Class Median (NHL) Median (HL) ROC AUC p-Value
(Unadjusted)

Phosphatidylcholine 0.25 −1.48 0.63 0.0057 *
Phosphatidylethanolamine 0.13 −0.6 0.59 0.0216

Cholesteryl ester 0.58 −0.53 0.62 0.0239
Phosphatidylinositol 0.16 −0.45 0.58 0.1142

Lysophosphatidylcholine 0.48 −0.93 0.58 0.1255
Lysophosphatidylethanolamine 0.35 −0.02 0.55 0.3185

Fatty acid 0.12 0.22 0.54 0.3344
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Figure 1. Box plots showing the median, first and third quartiles of the distributions, demonstrating
differences in levels of lipids in the seven classes of lipids identified as parts of sets 4 and 23 from [23],
distinguishing between HL and NHL in subjects with Alzheimer’s disease. Shown are standardized
values (centered by mean and divided by standard deviation), after adjusting for age and gender as
covariates. * Bonferroni-corrected p-value of < 0.05.

Among the 25 lipids in the two significant lipid sets identified above, the most commonly
appearing lipid class was phosphatidylcholine (14/25 lipids or 56%), which is significantly greater than
the proportion of all tested lipids that were in the phosphatidylcholine class (82/349 lipids or 23.4%,
p < 0.05, chi-squared test). See Table 5 for a list of individual lipids in sets 4 and 23 and their associated
capacity to separate HL from NHL subjects. Both of these analyses point to phosphatidylcholine levels
as the main factor distinguishing between HL and NHL subjects.

Table 5. Table of lipids derived from sets 4 and 23 from Barupal et al., 2019 and their performance in
distinguishing HL from NHL subjects.

Lipid ID Lipid Class Lipid Set Median
(NHL)

Median
(HL)

Fold Change
(HL/NHL) p-Value

UCD.Lipid.162 Phosphatidylcholine Set-23 63,671 52,397 0.82 0.0003
UCD.Lipid.163 Phosphatidylcholine Set-23 29,367 24,419.5 0.83 0.0006
UCD.Lipid.148 Phosphatidylcholine Set-4 5,056,746 4,380,450.5 0.87 0.0010
UCD.Lipid.161 Phosphatidylcholine Set-23 46,893 39,148.5 0.83 0.0014
UCD.Lipid.164 Phosphatidylcholine Set-23 20,525 16,734.5 0.82 0.0033
UCD.Lipid.17 Cholesteryl ester Set-4 254,617 198,944.5 0.78 0.0055
UCD.Lipid.150 Phosphatidylcholine Set-4 58,706 49,712 0.85 0.0069
UCD.Lipid.406 Phosphatidylcholine Set-4 130,587 116,420 0.89 0.0079
UCD.Lipid.128 Lysophosphatidylcholine Set-4 45,190 37,318.5 0.83 0.0130
UCD.Lipid.451 Phosphatidylethanolamine Set-23 5726.33 4968 0.87 0.0149
UCD.Lipid.143 Phosphatidylcholine Set-4 23,780 19,794 0.83 0.0150
UCD.Lipid.409 Phosphatidylcholine Set-4 69,527 57,894 0.83 0.0163
UCD.Lipid.149 Phosphatidylcholine Set-4 35,516.5 27,777 0.78 0.0166
UCD.Lipid.462 Phosphatidylinositol Set-4 9408 8256 0.88 0.0183
UCD.Lipid.447 Phosphatidylethanolamine Set-23 12,761 11,301.5 0.89 0.0197
UCD.Lipid.450 Phosphatidylethanolamine Set-23 12,513.79 10,888.5 0.87 0.0217
UCD.Lipid.410 Phosphatidylcholine Set-4 7910 7552 0.95 0.0310
UCD.Lipid.145 Phosphatidylcholine Set-4 22,891 19,311 0.84 0.0329
UCD.Lipid.126 Lysophosphatidylcholine Set-4 14,172.5 12,585 0.89 0.0428
UCD.Lipid.399 Phosphatidylcholine Set-4 98,283 79,011 0.80 0.0661
UCD.Lipid.16 Cholesteryl ester Set-4 179,126 125,757 0.70 0.0846
UCD.Lipid.442 Phosphatidylethanolamine Set-4 1817.5 1492 0.82 0.1016
UCD.Lipid.381 Lysophosphatidylethanolamine Set-4 5577.5 5206 0.93 0.2087
UCD.Lipid.517 Fatty acid Set-4 111,966 100,323 0.90 0.5032
UCD.Lipid.513 Fatty acid Set-4 22,307 21,665 0.97 0.7021

3.4. Analysis of Non-AD Subjects and Apolipoprotein E (APOE)

Similar analyses were done in subjects with MCI (n = 225, 64 with HL) and control subjects
without memory loss (n = 373, 104 with HL). None of the lipid sets were found to differentiate HL from
NHL subjects in either control or MCI cohorts (see Table 6). Interaction of disease diagnosis (AD, MCI,
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control subjects) and hearing loss status (HL, NHL) with respect to specific lipid classes was formally
assessed within the framework of a two-way ANOVA. Post hoc evaluation of this interaction effect
from this model revealed that phosphatidylcholine was significantly differentiated between HL vs.
NHL only in the AD subjects (p < 0.05), but not in the MCI and control subjects. Subjects across all
groups (control, MCI and AD) were also separated based on genotype (having at least one copy of
APOE4 or none), and no association was found between genotype and likelihood of HL.

Table 6. Table of lipid sets derived from Barupal et al. (2019) and their performance in distinguishing
HL from NHL in mild cognitive impairment (MCI) and NL subjects. ROC AUC = receiver operating
characteristic area under the curve. Top ten sets shown for each group of subjects.

MCI Subjects

Lipid Set Median (HN) Median (HL) ROC AUC p-Value (unadj.) q-Value (FDR-BH)

Set.13 −0.91 −0.42 0.54 0.0538 0.9348
Set.22 0.03 0.82 0.53 0.0775 0.9348
Set.14 −0.26 0.17 0.53 0.1122 0.9348
Set.25 0.19 −0.08 0.49 0.1824 0.9468
Set.16 −0.22 0.26 0.56 0.23 0.9468
Set.18 −1.34 −1.33 0.51 0.3203 0.9468
Set.27 0.31 −0.15 0.55 0.363 0.9468
Set.8 0.04 0.32 0.51 0.4406 0.9468

Set.17 0.03 −0.1 0.5 0.4798 0.9468
Set.24 −1.51 −0.39 0.51 0.5114 0.9468

Subjects without Memory Loss or Complaint

Lipid Set Median (HN) Median (HL) ROC AUC p-Value (unadj.) q-Value (FDR-BH)

Set.22 0.4 1.7 0.59 0.0092 0.2293
Set.17 0.48 −0.84 0.6 0.0502 0.4158
Set.14 0.37 0.54 0.54 0.0632 0.4158
Set.13 0.14 1.03 0.57 0.0818 0.4158
Set.3 −0.1 −0.07 0.53 0.0832 0.4158
Set.7 −0.33 −0.18 0.54 0.1062 0.4163
Set.8 −0.37 0.74 0.57 0.1166 0.4163
Set.11 −0.49 −0.24 0.54 0.1438 0.4495
Set.20 −0.14 −0.17 0.55 0.2283 0.5529
Set.23 1.25 1.24 0.48 0.2393 0.5529

4. Discussion

In the current study, 349 serum biomarkers were measured in 185 subjects with AD.
Using previously identified co-regulated sets of biomarkers [23], we found two sets of lipids that were
strongly associated with the presence of HL. Within these sets, the most common class of lipids was
phosphatidylcholine, and as a class and as individual biomarkers, phosphatidylcholines were found to
be significantly diminished in individuals with HL. Similar analyses in non-AD subjects (control and
MCI) did not reveal significant associations between lipidomic biomarkers and HL

4.1. Weaknesses in the Study

Hearing loss in this study was assessed in a non-systematic way—via subjective reports obtained
from the subjects. Using the National Health and Nutrition Examination Survey (NHANES), which
captured both objective hearing loss (using pure tone audiograms) and subjective hearing loss, previous
data have established concordance values between subjective and objective hearing loss ranging from
65–77% depending on demographic factors [31]. Older subjects, such as the ones in this study, tended
to underestimate their degree of hearing loss. These data suggest that some subjects with HL may
have inappropriately been placed in the NHL category, and vice versa, but with a greater likelihood
of missing HL subjects. Although there are several publicly available databases that have measured
hearing loss objectively (e.g., the Baltimore Longitudinal Study of Aging or National Health and
Nutrition Examination Survey), these did not systematically measure an extensive panel of lipid
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biomarkers. Conversely, despite the richness of biomarker data available in the ADNI, hearing was not
systematically measured. Thus, additional future work in subjects with objectively-measured hearing
loss will be required to confirm the associations reported here.

In addition, it is not possible to extrapolate the current findings to a therapeutic intervention.
As an observational study, the current work cannot be used to support the idea that supplementation
of phosphatidylcholine can protect against ARHL in subjects with AD. It is possible that
phosphatidylcholine levels and ARHL are related by a third, unmeasured, factor. Only a prospective,
randomized and blinded trial can determine whether phosphatidylcholine can improve ARHL.

4.2. Phosphatidylcholine, Alzheimer’s Disease and Hearing Loss

Phosphatidylcholine is one of the major phospholipids and a fundamental constituent of cell
membranes and may activate enzymatic antioxidants situated in the cell membrane. There is
also evidence for disrupted phosphatidylcholine metabolism in AD. For example, the enzymes
that break down phosphatidylcholine (phospholipase D and phospholipase A2) are altered in
AD [32,33]. In addition, low plasma levels of phosphatidylcholine docosahexaenoic acid have
been associated with the development of AD [34] as well as thinning of the prefrontal cortex [35].
With respect to ARHL, phosphatidylcholine’s protective role in hearing loss was suggested by work from
Seidman et al., who observed that lecithin (a polyunsaturated phosphatidylcholine) can protect against
aging-related hearing loss in rats [36]. In this study, the investigators observed higher mitochondrial
membrane potentials in the lecithin-treated group, suggesting preserved mitochondrial function.
Lecithin treatment also diminished the occurrence mtDNA4834 deletion (common aging-related
mitochondrial deletion) in the brain and cochlear tissue of the treated group. These data point to a role
of phosphatidylcholine in protecting cochlear mitochondrial function. In addition, the antioxidants
activated by phosphatidylcholine may protect the cell membrane from damage by reactive oxygen
species [37] that arise during aging-related cochlear hypoperfusion, which can lead to cochlear
degeneration [38,39]. These data all suggest that phosphatidylcholine levels may be depleted in AD
and ARHL.

4.3. Origins of Measured Lipids

The lipids measured in this study were extracted from blood samples, which brings about the
question of the origins of these lipids. Dietary fats are absorbed into the portal system to the liver.
In the liver, fatty acids are incorporated into lipoprotein particles which are then released into the
bloodstream. Additionally, adipocytes can release stored fatty acids into the blood as lipid levels
in the blood decrease. Evidence also suggests that some fatty acids can be synthesized in the brain,
but essential fatty acids still have to be transported across the blood–brain barrier [40]. Additional
studies done on adult rats to study the rate of polyunsaturated fatty acid incorporation from plasma
into the brain further suggests that this is a dynamic process with active daily turnover [41]. The exact
mechanism behind how fats enter the brain is still unclear. One study performed on cholesterol
homeostasis and hearing loss indicates that since the blood–brain barrier prevents the uptake of this
lipoprotein from circulation, brain cholesterol is synthesized in astrocytes; further, excess cholesterol
is metabolized into 24 (S)- hydroxycholesterol before secretion from the blood–brain barrier to the
liver [42]. Thus, measured lipids in this study are likely derived from a variety of sources.

5. Conclusions

In the current study, we observed that in the context of AD, lower serum levels of
phosphatidylcholine were associated with ARHL. The fact that this association was found in AD
subjects, but not in non-AD subjects, suggests that there is an interaction between the presence of
AD and the relationship between phosphatidylcholine and ARHL. Given that AD is associated with
diminished brain mitochondrial function and increased levels of lipid peroxidation, it is possible that
individuals with AD may not have the metabolic reserve to withstand additional metabolic stressors,
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such as declining levels of antioxidant molecules such as phosphatidylcholine. These data also suggest
that normalizing phosphatidylcholine levels in AD subjects, but not in non-AD subjects, may have a
role in the treatment or prevention of ARHL. Future studies will need to be done to investigate the
potential therapeutic role of phosphatidylcholine in this context.
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